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Applying the projector augmented-wave �PAW� method to relativistic spin-density functional theory �RS-
DFT� we derive PAW Dirac-Kohn-Sham equations for four-component spinor pseudo-wave-functions. The
PAW freedom to add a vanishing operator inside the PAW spheres allows us to transform these PAW Dirac-type
equations into PAW Pauli-type equations for two-component spinor pseudo-wave-functions. With these wave
functions, we get the frozen-core energy as well as the charge and magnetization densities of RSDFT, with
errors comparable to the largest between 1 /c2 and the transferability error of the PAW data sets. Presently, the
latter limits the accuracy of the calculations, not the use of the Pauli-type equations. The theory is validated by
applications to isolated atoms of Fe, Pt, and Au, and to the band structure of fcc-Pt, fcc-Au, and ferromagnetic
bcc-Fe.
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I. INTRODUCTION

After a few years from the proposal of density functional
theory �DFT�,1 a relativistic extension able to deal with both
nonmagnetic and magnetic systems was presented.2 Al-
though not free from subtle conceptual issues—a problem
that we do not address in this paper—the relativistic theory is
at the foundations of most DFT studies of materials. Pseudo-
potentials �PPs� are constructed starting from the atomic so-
lutions of relativistic DFT �RDFT� equations or of their sca-
lar relativistic �SR� approximation,3 and all-electron methods
deal relativistically with core electrons and often also with
valence electrons.4,5 Formally, the RDFT Kohn-Sham �KS�
equations are rather similar to their nonrelativistic counter-
parts: the kinetic-energy operator is replaced with the Dirac
kinetic energy6 and the wave functions are four-component
spinors. Magnetism is treated in the theory assuming that the
exchange and correlation energies are functionals of the
charge and magnetization densities. The resulting relativistic
spin-density functional theory �RSDFT� equations have been
solved by many authors in isolated atoms and molecules7–10

and several codes are available also for solids.11–13

Practical calculations of the DFT total energy require a
basis set and the plane-wave basis together with the projector
augmented-wave �PAW� �Refs. 14–17� method is becoming
increasingly popular. The PAW method makes a mapping,
exact in principle, between pseudo-wave-functions, de-
scribed by plane waves, and all-electron wave functions
whose rapid oscillations close to the nuclei are treated by
introducing spheres about each atom and radial grids inside
these spheres. The mapping is carried out with the help of a
set of partial waves and projectors calculated in the isolated
atoms. This mapping is exact in the limit of a large number
of partial waves but in practice a compromise must be made
between the partial-wave completeness and the computa-
tional efficiency. So far, the PAW method has been used
within nonrelativistic DFT,14–17 although SR effects are in-
cluded in the PAW data sets and sometimes also spin-orbit
effects are calculated.4,18

In this paper, we introduce RSDFT within the PAW
scheme. We give two formulations of the theory. A fully

relativistic �FR� Dirac-type version and a FR Pauli-type ver-
sion obtained from the Dirac-type version through approxi-
mations that do not worsen the overall accuracy. At the FR
level, the theory is quite similar to its nonrelativistic coun-
terpart. Nevertheless, we give here some details of its deri-
vation because, as far as we know, it is absent in the litera-
ture. In the relativistic theory, partial waves and projectors
are four-component spinors and the PAW RSDFT equations
are Dirac-type equations for four-component spinor pseudo-
wave-functions with a local effective self-consistent potential
and a nonlocal PP. The coefficients of the nonlocal PP are
recalculated at each self-consistent iteration with the instan-
taneous electronic partial occupations, leading to an efficient
and accurate picture of the interaction of the valence elec-
trons with the nuclei and core electrons.

After the introduction of the exact relativistic PAW theory,
we proceed by showing that often the PAW Dirac-Kohn-
Sham equations can be simplified. We show that it would be
worthwhile to solve these equations if the transferability er-
rors �TEs� of the PAW data sets and the other numerical
errors were kept below 1 /c2 �here c is the speed of light�, a
task that, although feasible, is quite hard. The TEs of modern
PAW data sets are larger than 1 /c2 so the PAW Dirac-type
equations can be simplified without losing accuracy by keep-
ing the approximation errors below the TEs. The result of
these simplifications are PAW Pauli-type equations whose
solutions are two-component spinors which are sufficient to
evaluate the FR frozen-core energy, as well as the charge and
magnetization densities, with an error either of order 1 /c2 or
comparable to the TE, depending on which is the largest.
This is possible because, outside the PAW spheres, the small
components of the pseudo-wave-functions are of order 1 /c
with respect to the large components �independently from the
nuclear charge ZI� and we can use Pauli-type equations with
an error of order 1 /c2 while, inside the PAW spheres, we can
remove the small components of the pseudo-wave-functions
exploiting the peculiarities of the PAW method and making
errors comparable to the TE. As long as the TE is larger than
1 /c2, we can make these approximations without worsening
the overall accuracy.
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The problem of simplifying the four-component Dirac
equations transforming them into two-component Pauli
equations has a long history and many approaches have been
proposed.19,20 Usually these methods neglect terms of order
�v /c�k, where v is an estimate of the electron velocity. The
most common expansion neglects terms with k=3 and in-
cludes mass-velocity, Darwin, and spin-orbit terms.20 Other
expansions might retain also higher order terms but when
applied to the calculation of the electronic structure these
expansions face the problem that close to the nucleus the
all-electron potential diverges and the velocity v becomes of
order ZI. In heavy atoms ZI /c is quite large. In the zero-order
regular approximation21 the problems due to the potential
divergence are avoided and the method has been used exten-
sively in molecules and solids.22,23 In our approach, approxi-
mations are used only outside the PAW spheres where v
�1 so that, even using Pauli equations with errors of order
�v /c�2, the final error is of order 1 /c2, does not increase with
the nuclear charge ZI, and is usually much smaller than
�ZI /c�k, even for large k.

Norm conserving �NC� and ultrasoft �US� �Ref. 24� PPs
are well-defined approximations of the PAW method.15 FR
NC-PPs have been known for a long time25,26 and several
applications of the FR US-PPs are already available in the
literature as well.27–32 For NC-PPs, the present work proves
the Kleinman’s observation that solutions of the Dirac-type
equations can be mimicked, with errors of order 1 /c2, by
solving Pauli-type equations with a PP tailored on the large
components of the solutions of the atomic radial Dirac-type
equations.25,26 In the US case, we obtain the FR US-PPs
introduced in Ref. 27 and, in addition, we give a few hints
for their construction. Moreover, we explain analytically why
FR US-PPs electronic band structures match all-electron RS-
DFT band structures, a result that we were able to prove only
numerically in Ref. 27.

In this paper, we implement the FR PAW Pauli-type for-
malism and validate it by a few applications. We start with
the atomic frozen-core energy and electron energy levels of
Fe, Pt, and Au and show transferability tests of the FR PAW
data sets. Then the band structures of the face-centered-cubic
�fcc� Pt and Au in a few high-symmetry points of the Bril-
louin zone are compared with the FR all-electron LAPW
approach11 and with the FR US-PPs.27 Finally, the FR PAW
electronic band structures of ferromagnetic body-centered-
cubic �bcc� Fe close to the Fermi level are compared with
Refs. 33 and 34 where a NC-PP and an all-electron method
were employed. We find that the FR PAW method yields
total energies and electronic levels that match the all-electron
results based on the Dirac-type equations of RSDFT.

This paper is organized as follows. In Sec. I, we summa-
rize the RSDFT and discuss its nonrelativistic limit in an
all-electron frozen-core framework and in Sec. II, we sum-
marize the nonrelativistic PAW approach. Section III con-
tains the derivation of the PAW RSDFT equations in their
Dirac-type form. In Sec. IV, we discuss how to simplify
these equations and transform them into PAW Pauli-type
equations for two-component spinor wave functions. Finally,
Sec. V contains a few applications of the FR PAW Pauli-type
theory. More technical questions are treated in the appendi-
ces. Appendix A deals with the generation of the FR PAW

data sets while Appendix B discusses how to perform the
summations over the four-component spinor indexes.

II. RELATIVISTIC SPIN-DENSITY FUNCTIONAL THEORY

The basic variables of relativistic DFT are the charge and
the vector current densities, however here we do not use the
general theory, but a simplified version �RSDFT� �Refs. 2
and 6� in which the dependence of the total energy on the
orbital part of the vector current is neglected and the spin
density is the basic variable. Within RSDFT the total energy
of a gas of N interacting electrons in the external potential of
fixed nuclei at positions RI can be written as a functional of
the four-component spinor one-electron orbitals �i,��r�,

Etot,ae = �
i,�1,�2

��i,�1
�TD

�1,�2��i,�2
� + Exc��e,m	 + EH��e + �Z	 ,

�1�

where i indicates the occupied states, the index � runs on the
four spinor components, and TD

�1,�2 are the components of the
Dirac kinetic-energy operator that can be written in terms of
the momentum operator p=−i� and of the 4�4 matrices �k
�k=x ,y ,z� and �. In Hartree atomic units, and subtracting
the electron rest energy, we have20

TD = c� · p + �� − 14�4�c2, �2�

where 14�4 is the 4�4 identity matrix and c is the speed of
light, about 137 in atomic unit.35 EH��e+�Z	 is the Hartree
energy of the electron ��e� and of the nuclear ��Z� charge
densities whereas Exc��e ,m	 are the exchange and correla-
tion energies that depend on the electron ��e�r�
=�i,���i,��r��2	 and on the magnetization densities �mk�r�
=�B�i,�1,�2

�i,�1

� �r����k��1,�2�i,�2
�r�, where �k /2 is the

spin angular momentum operator and �B is the Bohr magne-
ton	. Notice that the spin density ��1,�2

�r�
=�i�i,�1

� �r��i,�2
�r�, or �e�r� and mk�r� can be considered as

equivalent variables because �e�r�=����,��r� and mk�r�
=�B��1,�2

��1,�2
�r����k��1,�2.

The valence frozen-core total energy Etot, calculated by
subtracting from Etot,ae the kinetic and the Hartree energies of
the core electrons, is given by

Etot = �
i,�1,�2

��i,�1
�TD

�1,�2��i,�2
� + Exc�� + �c,m	 + EH��	

+
 d3rVloc�r���r� + UI,I, �3�

where now the index i runs on the valence states only, � and
�c indicate the valence and core charge densities, Vloc
=VH��Z+�c	 is the Coulomb potential of the core and nuclear
charges, and UI,I is the long-range ion-ion interaction energy.

The minimization of this functional leads to the Dirac-
type relativistic KS equations,6

�
�2

�TD
�1,�2 + �Veff�r� − �i	��1,�2 − �BBxc�r� · �����1,�2���i,�2

�

= 0, �4�

where the effective potential Veff�r�=Vloc�r�+VH�r�+Vxc�r�
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is the sum of the local, Hartree and exchange and correlation
potentials, and Bxc�r�=−�Exc /�m is the exchange and corre-
lation magnetic fields. VH�r� is the Hartree potential of the
valence electrons only whereas Vxc�r� and Bxc�r� are calcu-
lated with the total electron charge and magnetization densi-
ties. For latter convenience, we define VLOC

�1,�2�r�
=Veff�r���1,�2 −�BBxc�r� · �����1,�2.

The Dirac-type KS equations �Eq. �4�	 can be rewritten
introducing the large and the small components of the all-
electron wave functions,

��i,�� = 
��i,�
A �

��i,�
B �

� , �5�

where ��i,�
A � and ��i,�

B � are two-component spinors and the
index � runs on the two components. With the help of the
Pauli matrices ��� representation of the � and � matrices,
Eq. �4� becomes

�
�2

�c��1,�2 · p�i,�2

B �r� + �VLOC
�1,�2�r� − �i�

�1,�2	�i,�2

A �r�� = 0,

�6�

�
�2

�c��1,�2 · p�i,�2

A �r� + �V̄LOC
�1,�2�r�

− ��i + 2c2���1,�2	�i,�2

B �r�� = 0, �7�

where now VLOC
�1,�2�r�=Veff�r���1,�2 −�BBxc�r� ·��1,�2 and

V̄LOC
�1,�2�r�=Veff�r���1,�2 +�BBxc�r� ·��1,�2.

Nonrelativistic limit: The Pauli equations

When the electron speed is much smaller than c, these
equations can be approximated by the Pauli equations. From
Eq. �7� we get

�i,�1

B �r� = − �
�2

�V̄LOC�r� − ��i + 2c2�12�2	�1,�2

−1

��
�3

c��2,�3 · p�i,�3

A �r� . �8�

The diagonal elements of the matrix �i12�2− V̄LOC�r� are
comparable to the electron kinetic energy and the off-
diagonal elements are of the same order or smaller. In the
regions where these elements are small with respect to 2c2,
we can approximate

�i,�1

B �r� � �
�2

��1,�2 · p

2c
�i,�2

A �r� �9�

with a position-dependent error of order �v�r� /c	3, where v
is a parameter of magnitude comparable with the speed of
the electron in that region. By inserting Eq. �9� in Eq. �6� we
get the Pauli equations,

�
�2

�p2

2
��1,�2 + VLOC

�1,�2�r� − �i�
�1,�2��i,�2

A �r� = 0, �10�

that have an error of order �v /c�2. Notice that the solutions of
the Dirac equations �i,��r� are normalized. This means that

���Vd3r���i,�
A �r��2+ ��i,�

B �r��2�=1. Therefore �i,�
A �r� is not

normalized. However the missing term is of order �v /c�2, the
same order of the error of the Pauli equations and can be
consistently neglected. For an electron close to an heavy
nucleus of charge ZI, a good estimate is v�ZI and �ZI /c�2

might be sizable. For the valence states, the nuclear potential
is screened so v is significantly lower than ZI. Nevertheless,
the use of Eq. �10� in the regions close to the nuclei leads to
significant errors. Actually the mass-velocity, Darwin, and
spin-orbit terms are neglected in Eq. �10� so spin-orbit split-
tings are completely missing. On the contrary, in the regions
far from the nuclei or for light elements, Eq. �10� is a quite
good approximation of Eqs. �6� and �7�. The Pauli-type KS
equations can be obtained directly from the minimization of
the nonrelativistic DFT total energy written for two-
component spinor wave functions and used to deal with non-
collinear magnetic structures36

Etot,nr = �
i,�1

��i,�1

A �
p2

2
��i,�1

A � + Exc�� + �c,m	 + EH��	

+
 d3rVloc�r���r� + UI,I, �11�

where the charge density is ��r�=�i,���i,�
A �r��2 and

the magnetization density is mk�r�
=�B�i,�1,�2

�i,�1

A,� �r���k��1,�2�i,�2

A �r�.

III. NONRELATIVISTIC PAW METHOD

In the nonrelativistic PAW approach14–16 to the electronic
structure problem, the PAW method is used to calculate the
energy in Eq. �11�. We summarize in this section the main
features of the nonrelativistic PAW method following the
general scheme presented in Ref. 16 to deal with noncol-
linear magnetic structures. The approaches to noncollinear
magnetism implemented in Ref. 37 using US-PPs, or in Ref.
38 using NC-PPs, are approximations of this PAW formula-
tion. In the PAW approach, a linear mapping transforms the

pseudo-wave-functions ��̃i,�
A �, which are the variational vari-

ables, into all-electron wave functions ��i,�
A �,

��i,�
A � = ��̃i,�

A � + �
I,m

��	m
I,AE� − �	m

I,PS�	�
m
I ��̃i,�

A � . �12�

The mapping requires three sets of functions: the all-electron
partial waves �	m

I,AE�, the pseudo-partial-waves �	m
I,PS� and

the projector functions �
m
I �. The all-electron partial waves

are calculated in an isolated nonmagnetic atom by solving
the nonrelativistic Kohn and Sham equations in spherical
geometry at N� values of the energy, for a number of orbital
angular momenta l. Therefore the index I in �	m

I,AE� indicates
the atom and means that the function is centered about the
atom at RI and m is a composite index that indicates � , l ,ml,
where 1
�
N� identifies the energy, 0
 l
 lmax indicates
the orbital angular momentum and −l
ml
 l indicates the
projection of the orbital angular momentum on a quantiza-
tion axis. Each pseudo-partial-wave coincides with the cor-
responding all-electron partial wave outside a given cutoff
radius and is smoothly continued by a pseudization recipe
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inside the cutoff radius. For each atom, the maximum cutoff
radius defines the size of the PAW sphere. The projector
functions are orthogonal to the pseudo-partial-waves
�
n

I �	m
I,PS�=�nm and are localized inside the PAW sphere.

The accuracy of this mapping can be increased systemati-
cally by increasing N� and lmax and when these are suffi-
ciently large the mapping is virtually exact, meaning that
inside the PAW sphere

�
m

�	m
I,PS��
m

I � = 1 �13�

when applied to any pseudo-wave-function.
Using the above mapping, and the completeness relation-

ship �Eq. �13�	, one can prove that the expectation value of a
local operator A that acts on all-electron wave functions can

be calculated as the expectation value of a new operator Ã
that acts on pseudo-wave-functions and is given by14

Ã = A + �
I,mn

�
m
I ���	m

I,AE�A�	n
I,AE� − �	m

I,PS�A�	n
I,PS�	�
n

I � .

�14�

The operator Ã is not completely determined by the method.
There is still the additional freedom to add a term of the form

� = B − �
I,mn

�
m
I ��	m

I,PS�B�	n
I,PS��
n

I � , �15�

where B is an arbitrary operator localized inside the PAW
spheres. This is due to the fact that, using Eq. �13�, inside the

PAW spheres, we have �n�	n
I,PS��
n

I ��̃i,�
A �= ��̃i,�

A � and there-

fore ����̃i,�
A ����̃ j,�

A �=0.
Using Eq. �14� with the operator A= �r��r�, one obtains the

PAW expression of the spin-density matrix that is composed
by three terms: ��1,�2

�r�= �̃�1,�2
�r�+�I��1,�2

1,I �r�−�I�̃�1,�2

1,I �r�,
where the first term is calculated in real space while the other
two terms are calculated inside the PAW spheres on radial
grids. We have16

�̃�1,�2
�r� = �

i

��̃i,�1

A �r��r��̃i,�2

A � , �16�

��1,�2

1,I �r� = �
mn

�mn
I,�1,�2�	m

I,AE�r��r�	n
I,AE� , �17�

�̃�1,�2

1,I �r� = �
mn

�mn
I,�1,�2�	m

I,PS�r��r�	n
I,PS� , �18�

where the partial occupations are defined as

�mn
I,�1,�2 = �

i

��̃i,�1

A �
m
I ��
n

I ��̃i,�2

A � . �19�

From the spin-density matrix, the charge and magnetization
densities are obtained readily as ��r�=����,��r� and mk�r�
=�B��1,�2

��1,�2
�r���k��1,�2. With obvious generalizations

we can define also �̃�r� and m̃k�r� on the real-space mesh,
and �1,I�r�, mk

1,I�r�, �̃1,I�r�, and m̃k
1,I�r� inside the spheres.

As written, the charge calculated in the real-space mesh
integrating �̃�r� on all space is not equal to the number of

electrons. Its actual value depends on the pseudization pro-
cedure of the pseudo-partial-waves. In order to simplify the
calculation of the electrostatic energy, it is convenient
to introduce compensation charges equal to �̂I�r�
=�mn�mn

I Q̂mn
I �r� inside the PAW spheres ��mn

I =���mn
I,�,�� and

to �̂�r�=�I�̂
I�r−RI� in the real-space mesh, such that inside

each sphere �̂I�r� has not only the same charge but also the
same multipole moments as �1,I�r�− �̃1,I�r�. The augmenta-

tion functions Q̂mn
I �r� are determined in such a way to satisfy

this constraint as explained for instance in Ref. 15. Using the
same augmentation functions we can define the compensa-

tion spin density: �̂�1,�2

1,I �r�=�mn�mn
I,�1,�2Q̂mn

I �r�, and hence the
compensation magnetization density m̂k

1,I�r� inside the
spheres and m̂k�r�=�Im̂k

1,I�r−RI� in the real-space mesh.
Using the relationship between all-electron and pseudo-

wave-functions, the definition of the operators in Eq. �14�,
and the decomposition of the electrostatic energy discussed
in Ref. 15, the frozen-core energy �Eq. �11�	 can be written in
terms of pseudo-wave-functions as a sum of three terms, the
first calculated in real space and the other two calculated on

the radial grids inside the spheres: Etot= Ẽ+E1− Ẽ1 with16

Ẽ = �
i,�

��̃i,�
A �

p2

2
��̃i,�

A � + Exc��̃ + �̂ + �̃c,m̃ + m̂	 + EH��̃ + �̂	

+
 d3rṼloc�r���̃�r� + �̂�r�	 + UI,I, �20�

Ẽ1 = �
I,mn

�mn
I �	m

I,PS�
p2

2
�	n

I,PS�

+ �
I

Exc��̃1,I + �̂I + �̃c
I ,m̃1,I + m̂1,I	 + �

I

EH��̃1,I + �̂I	

+ �
I



�I

d3rṽloc
I �r���̃1,I�r� + �̂I�r�	 , �21�

E1 = �
I,mn

�mn
I �	m

I,AE�
p2

2
�	n

I,AE� + �
I

Exc��1,I + �c
I ,m1,I	

+ �
I

EH��1,I	 + �
I



�I

d3rvloc
I �r��1,I�r� , �22�

where the core charges �̃c and �̃c
I are defined as in Ref. 15

while we used the notation vloc
I �r� for vH��Zc

I � and ṽloc
I �r� for

vH��̃Zc
I �; Ṽloc�r� is equal to the sum �Iṽloc

I �r−RI�. The mini-
mization of this energy with respect to pseudo-wave-
functions that obey to the orthogonality constraint

����̃i,��S��̃ j,��=�i,j, where the overlap matrix S is

S = 1 + �
I,mn

qmn
I �
m

I ��
n
I � �23�

with qmn
I = �	m

I,AE �	n
I,AE�− �	m

I,PS �	n
I,PS�, yields the nonrelativ-

istic PAW KS equations,
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�
�2

�p2

2
��1,�2 +
 d3rṼLOC

�1,�2�r�K̃�r� − �iS��1,�2

+ �
I,mn

�DI,mn
1,�1,�2 − D̃I,mn

1,�1,�2��
m
I ��
n

I ����̃i,�2
� = 0,

�24�

where

DI,mn
1,�1,�2 = �	m

I,AE�
p2

2
+ VLOC

I,�1,�2�	n
I,AE� , �25�

D̃I,mn
1,�1,�2 = �	m

I,PS�
p2

2
+ ṼLOC

I,�1,�2�	n
I,PS�

+ 

�I

d3rQ̂mn
I �r�ṼLOC

I,�1,�2�r� . �26�

Notice that the coefficients of the nonlocal PP are spin de-
pendent in this PAW formulation because they are calculated
with the spin-dependent partial occupations. In the US-PPs
case these coefficients are calculated in the nonmagnetic iso-

lated atom and are spin independent. The function K̃�r� is
defined in terms of the augmentation functions as

K̃�r� = �r��r� + �
I,mn

Q̂mn
I �r − RI��
m

I ��
n
I � , �27�

the potential VLOC
I,�1,�2�r� is calculated with the local potential

vloc
I �r� and the charge and magnetization densities �1,I�r� and

m1,I�r�, ṼLOC
I,�1,�2�r� with ṽloc

I �r�, �̃1,I�r�+ �̂I�r� and m̃1,I�r�
+m̂I�r�, and ṼLOC

�1,�2�r� with Ṽloc�r�, �̃�r�+ �̂�r�, and m̃�r�
+m̂�r�.

Notice that, in practical applications, the present scheme
is improved upon by generating the PAW data sets starting
from the scalar relativistic equations in the isolated atom and
therefore partially including relativistic effects.

IV. RSDFT WITHIN THE PAW METHOD

In the PAW approach to RSDFT, we want to rewrite the
frozen-core total energy of a gas of N interacting electrons in
the field of fixed ions at positions RI �Eq. �3�	 as a functional

of the four-component pseudo-wave-functions ��̃i,��. In the
FR case, the partial waves and projectors are four-component
spinors and the PAW mapping from pseudo to all-electron
wave functions is

��i,�� = ��̃i,�� + �
I,m

�
�1

��	m,�
I,AE� − �	m,�

I,PS�	�
m,�1

I ��̃i,�1
� .

�28�

The all-electron partial waves are a product of radial func-
tions, solutions of the atomic radial Dirac-type KS equations,
and spin-angle functions dependent on the angular and spin
variables �see Appendix B�. Therefore, the index m is a
shorthand notation for m= �� , l , j ,mj� that, in addition to �
and l defined as in the nonrelativistic case �l is the orbital
angular momentum of the large component�, contains also j

the total angular momentum and mj its projection on a quan-
tization axis. As in the nonrelativistic case, the pseudo- and
all-electron partial waves coincide outside a given radius
while inside the PAW spheres, the pseudo-partial-waves are
obtained by a pseudization procedure starting from the all-
electron partial waves �see Appendix A�. The projectors are
constructed after the pseudo-partial-waves with one of the
usual recipes.14,24 The difficulties encountered in the FR case
have been discussed only for NC-PPs in Ref. 39. The PAW
case is simpler to deal with because there is no NC con-
straint. There are several different options and a few of them
are compared in Appendix A. When the partial waves and
projectors are constructed as described in Appendix A, the
following completeness relationship holds inside the spheres
for sufficiently large N� and lmax:

�
m

�	m,�1

I,PS ��
m,�2

I � = ��1,�2
�29�

when applied to any pseudo-wave-function. Consequently
also the PAW mapping of the all-electron operators into
pseudooperators Eq. �14� can be generalized in an obvious
manner.

For instance, applying this PAW mapping to set the den-
sity matrix, we find its expression in terms of the pseudo-
wave-functions. ��1,�2

�r� is the sum of three terms:
��1,�2

�r�= �̃�1,�2
�r�+�I��1,�2

1,I �r�−�I�̃�1,�2

1,I �r�, where

�̃�1,�2
�r� = �

i

��̃i,�1
�r��r��̃i,�2

� , �30�

��1,�2

1,I �r� = �
mn

�mn
I �	m,�1

I,AE �r��r�	n,�2

I,AE� , �31�

��1,�2

1,I �r� = �
mn

�mn
I �	m,�1

I,PS �r��r�	n,�2

I,PS� , �32�

where the partial occupations are

�mn
I = �

i,�1,�2

��̃i,�1
�
m,�1

I ��
n,�2

I ��̃i,�2
� . �33�

From the density matrix, the charge and magnetization den-
sities are obtained readily as ��r�=����,��r� and mk�r�
=�B��1,�2

��1,�2
�r����k��1,�2.

As in the nonrelativistic case, we can add to the spin
density calculated in real space a compensation spin density

and write: �̃�1,�2
�r�+ �̂�1,�2

�r�=�i,�3,�4
��̃i,�3

�K̃�3,�4

�1,�2�r���̃i,�4
�,

where the functions K̃�3,�4

�1,�2�r� and the augmentation functions

Q̂mn,�1,�2

I �r� which define the compensation spin density in-

side the spheres, ��̂�1,�2

1,I �r�=�mn�mn
I Q̂mn,�1,�2

I �r�	 are related
by

K̃�3,�4

�1,�2�r� = �r��r���1,�3��2,�4 + �
I,mn

Q̂mn,�1,�2

I �r − RI��
m,�3

I �

��
n,�4

I � . �34�

The form of Q̂mn,�1,�2

I �r� is, to a certain extent, arbitrary. As
long as the compensation charges �̂I�r�
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=�mn���mn
I Q̂mn,�,�

I �r� have the same multipole moments of

�1,I�r�− �̃1,I�r�, Q̂mn,�1,�2

I �r� can be chosen so as to make

K̃�3,�4

�1,�2�r� as smooth as possible. The simplest choice
Qmn,�1,�2

I �r�= �	m,�1

I,AE �r��r �	n,�2

I,AE�− �	m,�1

I,PS �r��r �	n,�2

I,PS� leads

to functions K̃�3,�4

�1,�2�r� that are too hard to expand in-plane
waves and a pseudization method, like the one adopted in
Ref. 15 or in Ref. 40, is necessary. In order not to slow down
to much the exposition, we discuss the details of our ap-
proach in Appendix B. Here we just anticipate that the func-
tions Qmn,�1,�2

I �r� are replaced with smooth functions

Q̂mn,�1,�2

I �r� whose Fourier expansion converges rapidly in-
plane waves.

At this point, the charge density is separated as in the
nonrelativistic case. Hence the Hartree and exchange and
correlation energies can be calculated in the same way with
terms evaluated on the real-space mesh and terms calculated
inside the spheres.15 Skipping the derivation that from this
point onward becomes identical to that reported in Ref. 15,

we write the FR frozen-core total energy as Etot= Ẽ+E1− Ẽ1

with

Ẽ = �
i,�1,�2

��̃i,�1
�TD

�1,�2��̃i,�2
� + Exc��̃ + �̂ + �̃c,m̃ + m̂	

+ EH��̃ + �̂	 +
 d3rṼloc�r���̃�r� + �̂�r�	 + UI,I, �35�

Ẽ1 = �
I,mn,�1,�2

�mn
I �	m,�1

I,PS �TD
�1,�2�	n,�2

I,PS� + �
I

Exc��̃1,I + �̂I

+ �̃c
I ,m̃1,I + m̂1,I	 + �

I

EH��̃1,I + �̂I	 + �
I



�I

d3rṽloc
I �r�

���̃1,I�r� + �̂I�r�	 , �36�

E1 = �
I,mn,�1,�2

�mn
I �	m,�1

I,AE �TD
�1,�2�	n,�2

I,AE� + �
I

Exc��1,I + �c
I ,m1,I	

+ �
I

EH��1,I	 + �
I



�I

d3rvloc
I �r��1,I�r� , �37�

where the core charges �̃c and �̃c
I and the local potentials

vloc
I �r�, ṽloc

I �r�, and Ṽloc�r� are defined as in the nonrelativis-
tic case.

The minimization of this energy with respect to pseudo-
wave-functions that obey to the orthogonality constraint

��1,�2
��̃i,�1

�S�1,�2��̃ j,�2
�=�i,j, where the overlap matrix S is

S�1,�2 = ��1,�2 + �
I,mn

qmn
I �
m,�1

I ��
n,�2

I � �38�

with qmn
I =����	m,�

I,AE �	n,�
I,AE�− �	m,�

I,PS �	n,�
I,PS��, yields the PAW

Dirac-type KS equations,

�
�2

�TD
�1,�2 + �

�3,�4


 d3rṼLOC
�3,�4�r�K̃�1,�2

�3,�4�r� − �iS
�1,�2

+ �
I,mn

�DI,mn
1 − D̃I,mn

1 ��
m,�1

I ��
n,�2

I ����̃i,�2
� = 0,

�39�

where

DI,mn
1 = �

�1,�2

�	m,�1

I,AE �TD
�1,�2 + VLOC

I,�1,�2�	n,�2

I,AE� , �40�

D̃I,mn
1 = �

�1,�2

�	m,�1

I,PS �TD
�1,�2 + ṼLOC

I,�1,�2�	n,�2

I,PS�

+ �
�1,�2



�I

d3rQ̂mn,�1,�2

I �r�ṼLOC
I,�1,�2�r� . �41�

The potential VLOC
I,�1,�2�r� is calculated with the local potential

vloc
I �r� and the charge and magnetization densities �1,I�r� and

m1,I�r�, ṼLOC
I,�1,�2�r� with ṽloc

I �r�, �̃1,I�r�+ �̂I�r� and m̃1,I�r�
+m̂I�r�, and ṼLOC

�1,�2�r� with Ṽloc�r�, �̃�r�+ �̂�r�, and m̃�r�
+m̂�r�.

Solving these equations, we get the FR PAW pseudo-
wave-functions. From them the all-electron wave functions
�Eq. �28�	, the relativistic total energy �Eqs. �35�–�37�	 and
the RSDFT charge and magnetization densities �Eqs.
�30�–�33�	. Ideally, these quantities are as accurate as the
all-electron frozen-core results but, in practice, they are af-
fected by the PAW data sets TEs. For instance, in atoms,
PAW data sets can recover the frozen-core energies and the
energy levels of atomic configurations close to the reference
configuration with an accuracy of a few millirydberg. As
highlighted in the next section, Eqs. �39�–�41� can be trans-
formed into Pauli-type equations making errors comparable
to the TEs or of order 1 /c2. The TEs can be reduced by
increasing the number of partial waves and projectors, but
the intrinsic error of the Pauli-type equations cannot be
smaller than 1 /c2, so in the future the availability of increas-
ingly larger computational resources might make the imple-
mentation and the solution of Eqs. �39�–�41� attractive but
for our present purposes the Pauli-type equations are much
less demanding computationally and, at the same time, of
similar accuracy.

V. FULLY RELATIVISTIC PAW VIA PAULI-TYPE
EQUATIONS

A. Kinetic energy

In this section we derive PAW Pauli-type KS equations
that have an accuracy comparable to the PAW Dirac-type KS
equations. We start by observing that, outside the PAW
spheres, Pauli-type equations like those presented in Sec. II
are a good approximation because in that region relativistic
effects are small. Pauli-type equations introduce an error in
the kinetic energy of order �v� /c�2 and, outside the spheres,
v� is on the order of 1 a.u., often even lower about 0.5 a.u.,
so that �v� /c�2�5–1�10−5, and this error is independent
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from the nuclear charge ZI. This observation allows us to
write the relativistic kinetic energy in the form

Ekin = �
i,�1,�2

��i,�1
�TD

�1,�2��i,�2
�� + �

i,�1

��i,�1

A �
p2

2
��i,�1

A ��̄,

�42�

where the symbols � and �̄ indicate that the expectation
values are to be calculated inside and outside the PAW
spheres, respectively. Inside the spheres, we apply the PAW
transformation of the operators while, outside the spheres,
we simply replace the all-electron with pseudo-wave-
functions because in that region they coincide. We obtain

Ekin = �
i,�1,�2

��̃i,�1
�TD

�1,�2��̃i,�2
�� + �

i,�1

��̃i,�1

A �
p2

2
��̃i,�1

A ��̄

+ �
I,mn,�1,�2

�mn
I ��	m,�1

I,AE �TD
�1,�2�	n,�2

I,AE��

− �	m,�1

I,PS �TD
�1,�2�	n,�2

I,PS��	 . �43�

Now inside the spheres we can add a vanishing operator. The
PAW method has the freedom to add a term written as14

B�1,�2 − �
I,mn,�3,�4

�
m,�1

I ��	m,�3

I,PS �B�3,�4�	n,�4

I,PS���
n,�2

I � .

�44�

For a complete set of pseudo-partial-waves and projectors,
the expectation value of this term between pseudo-wave-
functions vanishes identically whereas in practice it is com-
parable to the TE. Specifically, we take B=A−TD, where A is
a diagonal 4�4 matrix that has the operator p2 /2 in the first
two diagonal elements and is zero elsewhere. With this
choice, Eq. �43� becomes

Ekin = �
i,�1

��̃i,�1

A �
p2

2
��̃i,�1

A �

+ �
I,mn

�mn
I � �

�1�2

�	m,�1

I,AE �TD
�1,�2�	n,�2

I,AE��

− �
�1

�	m,�1

I,PS,A�
p2

2
�	n,�1

I,PS,A��� . �45�

Equation �45� shows that we can get the FR kinetic energy,
applying p2

2 to the pseudo-wave-functions. Outside the
spheres because the Pauli-type equations hold �with an error
of order �v� /c�2	, inside the spheres because the difference
between the Dirac kinetic energy and the nonrelativistic ki-
netic energy is compensated by the radial grid terms, where
only the all-electron kinetic energy is evaluated using the
Dirac operator. Using Pauli-type equations of higher order
outside the spheres, for instance including mass-velocity,
Darwin, and spin-orbit corrections,20 we could reduce the
errors in that region because we would have terms correct up
to order �v� /c�2, but in the other regions the accuracy is
lower, because of the TEs and of the errors that we make in
the following, so several other modifications are necessary to
bring the overall accuracy to errors of order �v� /c�3.

Notice that the kinetic energy in Eq. �45� is now depen-
dent on the size of the PAW spheres �, whereas the FR
expression was independent from �. Specifically, the terms
��1�2

�	m,�1

I,AE �TD
�1,�2�	n,�2

I,AE� diverge for unbound partial waves,
a divergence that, in the FR case, is compensated by the
terms ��1�2

�	m,�1

I,PS �TD
�1,�2�	n,�2

I,PS�. In Eq. �45� the divergence is
compensated only for the large components not for the small
ones. Now the integrals are finite because they are limited to
the PAW spheres but at the same time they vary with the
volume of the PAW spheres. This is unavoidable because the
spheres introduce a separation between the region where the
Dirac kinetic energy is dealt with exactly �modulo the TEs�
and the region where there is an error of order �v� /c�2. If the
volumes of these two regions change, the kinetic energy
changes as well but still with differences of order �v� /c�2.
Notice also that to obtain Eq. �45�, we have not changed the
FR PAW mapping between all-electron and pseudo-wave-
functions, or changed the completeness relationship. We
have only used the freedom of the PAW method to add an
operator localized inside the spheres in the real-space mesh
and to subtract the same operator inside the spheres.

B. Removal of the small components of the
pseudo-wave-functions

The small components of the pseudo-wave-functions,
which are quantities of order 1 /c, cannot be obtained any
longer through the minimization of the total energy that has
now errors of order 1 /c2. These small components are still
present in the partial occupations �Eq. �33�	, in the density
matrix, and in the orthogonality constraints. To remove them
everywhere, we have to make approximations that introduce
errors comparable to the TEs or of order 1 /c2, depending on
which is the largest. The method illustrated in Appendix A
introduces errors of order v1

4 /c2, where v1
4 is never larger

than about 10 a.u.. This error can be reduced or even can-
celed �see A� if it will become larger that the TEs but so far
it is a small error and we have kept it in the formalism.

In general, the shapes of the pseudo-wave-functions in-
side the PAW spheres are arbitrary. They must match con-
tinuously the all-electron wave functions at the border of the
PAW spheres but they have not the oscillations of the all-
electron wave functions. At the border of the spheres, the
small components of the all-electron wave functions are of
order �v� /c� independently from the nuclear charge ZI and
the small components of the pseudo-wave-functions can be
kept everywhere of order v1 /c �here v1 varies with the state
and is also position dependent but usually is smaller than 1
or 2 a.u.�. In Appendix A, we show that the small compo-
nents of the projectors can be defined so as to be of order

v1
3 /c hence the product ����̃i,� �
m,�

I � in Eq. �33� is equal to

����̃i,�
A �
m,�

I,A � up to a term of order v1
4 /c2 that can be ne-

glected thus removing from the partial occupations the small
components of the pseudo-wave-functions.

Let us now consider the density matrix �Eqs. �30�–�33�	.
To remove the small components of the pseudo-wave-
functions from its expression, we use again the possibility
offered by the PAW method to add a vanishing term inside
the spheres �see Eq. �44�	 and take as B�1,�2 a diagonal op-
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erator with −�r��r� in the third and fourth diagonal elements
and zero elsewhere. After a few steps similar to those illus-
trated for the kinetic energy we get

��1,�2
�r� = �

i

��̃i,�1

A �r��r��̃i,�2

A � + �
I,mn

�mn
I ��	m,�1

I,AE �r�

��r�	n,�2

I,AE�� − �	m,�1

I,PS,A�r��r�	n,�2

I,PS,A��	 �46�

for the first upper 2�2 block and

��1,�2
�r� = �

I,mn

�mn
I �	m,�1

I,AE �r��r�	n,�2

I,AE�� �47�

for the other blocks. Equation �46� tells us that the large
components of the pseudo-wave-functions suffice to calcu-
late the density matrix on the real-space mesh as far as only
the large components of the pseudo-partial-waves are used
inside the spheres to get �̃�1,�2

1,I . Only the all-electron-density
matrix inside the spheres ���1,�2

1,I � needs both the large and the
small components of the all-electron partial waves. In Eq.
�46�, we have neglected the small components of the pseudo-
wave-functions outside the spheres with an error of order
�v� /c�2. For example, in a Pt atom the charge density due to
these terms is about 10−5 electrons, at least two orders of
magnitude smaller that the charge due to the small compo-
nents of the all-electron valence wave functions.

The pseudo-wave-functions obey to orthogonality con-
straints �Eq. �38�	, which depend on the both the large and
the small components. We can now transform this constraint
by adding, inside the spheres a vanishing term as in Eq. �44�
with B�1,�2 equal to a diagonal operator with −1 in the third
and fourth diagonal elements and zero elsewhere. By this
method, we obtain the first upper 2�2 block of the overlap
matrix,

S�1,�2 = ��1,�2 + �
I,mn

�
m,�1

I,A ���
�1

�	m,�1

I,AE �	n,�1

I,AE��

− �
�3

�	m,�3

I,PS,A�	n,�3

I,PS,A����
n,�2

I,A � . �48�

The other blocks contribute to the orthogonality constraint
with terms of order v1

4 /c2 or smaller and can be neglected.
Equation �48� can be obtained also starting from the spin-
density, Eq. �46�, and requiring the integral of the charge
density to be equal to the number of electrons.

C. Total energy and PAW Pauli-type KS equations

We can now define the charge densities inside the spheres,
�1,I�r� as in the previous section, and �̃1,I�r�
=�mn���mn

I �	m,�
I,PS,A �r��r �	n,�

I,PS,A�. Introducing a compensa-
tion charge �̂I�r� with the same multipole moments of
�1,I�r�− �̃1,I�r� as in the FR case, we can proceed to the sepa-
ration of the Hartree and exchange and correlation energies
into terms calculated in the real-space mesh and terms cal-
culated inside the spheres. We get the frozen-core total en-

ergy in the form Etot= Ẽ+E1− Ẽ1, where E1 is given by Eq.
�37� while

Ẽ = �
i,�

��̃i,�
A �

p2

2
��̃i,�

A � + Exc��̃ + �̂ + �̃c,m̃ + m̂	 + EH��̃ + �̂	

+
 d3rṼloc�r���̃�r� + �̂�r�	 + UI,I, �49�

Ẽ1 = �
I,mn,�

�mn
I �	m,�

I,PS,A�
p2

2
�	n,�

I,PS,A� + �
I

Exc��̃1,I + �̂I + �̃c
I ,m̃I

+ m̂I	 + �
I

EH��̃1,I + �̂I	 + �
I



�I

d3rṽloc
I �r���̃1,I�r�

+ �̂I�r�	 . �50�

The minimization of the total energy with respect to wave
functions that obey the orthogonality constraints �Eq. �48�	
leads to the following expression for the Pauli-type PAW KS
equation:

�
�2

�p2

2
��1,�2 + �

�1,�2


 d3rṼLOC
�1,�2�r�K̃�r��1,�2

�1,�2 − �iS
�1,�2

+ �
I,mn

�DI,mn
1 − D̃I,mn

1 ��
m,�1

I,A ��
n,�2

I,A ����̃i,�2

A � = 0, �51�

where

DI,mn
1 = �

�1,�2

�	m,�1

I,AE �TD
�1,�2 + VLOC

I,�1,�2�	n,�2

I,AE� , �52�

D̃I,mn
1 = �

�1,�2

�	m,�1

I,PS,A�
p2

2
��1,�2 + ṼLOC

I,�1,�2�	n,�2

I,PS,A�

+ �
�1,�2



�I

d3rQ̂mn,�1,�2

I �r�ṼLOC
I,�1,�2�r� . �53�

These Pauli-type KS equations resemble the FR US-PPs
equations and we can exploit this similarity to write them as
the nonrelativistic PAW equations, following the approach of
Refs. 27 and 28. The projectors depend on spin through the
spin-angle functions; they can be written in terms of spheri-
cal harmonics, transferring the spin index to the nonlocal PP
coefficients as shown in Ref. 27 for FR US-PPs. The sums
over � that appear in Eqs. �51�–�53� can be carried out ana-
lytically �see Appendix B� so that the angular and spin de-
pendence can be dealt with as in the US-PPs case with minor
changes in the calculation of DI,mn

1 . After these transforma-
tions, the Hamiltonian and the total energy become formally
identical to the nonrelativistic ones, and the Hellmann-
Feynman forces as well as density functional perturbation
theory can be written as in Refs. 17 and 28.

Kleinman’s25 observation that a NC-PP tailored on the
solutions of a Dirac-type equation could yield the FR results
with errors of order 1 /c2 is implicit in our method. However,
in the NC case there is no well established procedure to deal
with the charge density of the small components of the va-
lence all-electron wave functions. If the small components
are neglected, the large components are not normalized. For
instance, in a Pt atom, the valence charge of the small com-
ponents of the 5d3/2 and 5d5/2 states, which are occupied by
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ten electrons, is about 2�10−3 electrons so the missing norm
of each state is about 2�10−4. This error is small but has to
be corrected in some way. In Ref. 27, we normalized the
large components of the bound all-electron partial waves be-
fore applying the pseudization procedure obtaining FR US-
PPs with good transferability properties. Alternatively, the
radial Dirac-type equation can be inverted accounting for the
presence of the small components, as suggested in Ref. 39.
Within the PAW formalism, the correct charge is recovered
from the all-electron partial waves that are calculated ex-
actly. In the Pauli-type case, we still have an error of order
1 /c2 due the missing norm of the small components of the
pseudo-wave-functions outside the PAW spheres. In the cal-
culations presented below this error has been compensated
normalizing both the large and the small components of the
bound all-electron partial waves. The missing norm is how-
ever small. For instance, in Pt, it turns out to be about 10−6

per state.

VI. APPLICATIONS

The PAW Pauli-type equations �Eq. �51�	 have been
implemented in the QUANTUM ESPRESSO package,41 and here
we present a few results obtained with this feature. The
present method, specialized to FR US-PPs, was applied in
Refs. 27–32. That implementation was the starting point of
the present PAW extension �see Appendix B�. As applica-
tions, we compare the PAW electronic band structures of
fcc-Pt and fcc-Au and of the ferromagnetic bcc-Fe with pub-
lished results. The local-density approximation �LDA� �Ref.
42� is used for the exchange and correlation energies in

fcc-Pt and fcc-Au and the spin-polarized generalized gradi-
ent approximation of Perdew-Burke and Ernzerhof �PBE�
�Ref. 43� is used for bcc-Fe. No relativistic correction has
been included in the exchange and correlation functionals.
The PAW data sets of Fe, Pt, and Au are described in the
note.44 For each element, we considered two PAW data sets,
one including semicore states �3s and 3p for Fe, 5s and 5p
for Pt and Au� and one without semicore states. The kinetic-
energy cutoffs for the wave functions of Fe �Pt� �Au	 are 45
Ry �40 Ry� �35 Ry	 for the data sets without semicore states
and 75 Ry �60 Ry� �80 Ry	 for data sets with semicore states.
The cufoffs for the charge density are always 300 Ry except
for Fe with semicore states for which we used 400 Ry. In
bcc-Fe �fcc-Pt and fcc-Au�, we sampled the BZ by a 24
�24�24 �16�16�16� uniform k-point grid and a smear-
ing parameter �=0.02 Ry.

We start by considering the TE of the FR PAW data sets.
We report in Tables I–III the energy levels of a few atomic
configurations and the difference between their total energy
and the energy of the reference configuration.44 The magni-
tude of the TEs, indicated in parenthesis, is of a few milliry-
dbergs for the data sets without semicore states and of frac-
tions of millirydberg for those with semicore states. The
larger TEs found in the former case can be attributed to the
frozen-core approximation because they are similar to the
errors reported in square brackets that are obtained as the
difference between the all-electron eigenvalues and the ei-
genvalues of an all-electron calculation in which the core
states are kept frozen in the reference configuration. Finally,
notice that the values of the TEs found in Tables I–III are
similar to the typical TEs of SR data sets and are larger than
1 /c2.

TABLE I. Comparison of the PBE energy eigenvalues and of the total energies calculated by FR PAW
data sets and by solving an all-electron atomic Dirac-type equation for a few atomic configurations of Fe. The
reported eigenvalues are the all-electron ones �in Ry and without the minus sign�. In parenthesis the differ-
ence �in mRy� between the all-electron and the PP results. The latter have been obtained by the FR PAW
Pauli-type method. The PP eigenvalue is the algebraic sum of the all-electron eigenvalue and the number in
parenthesis. The total-energy difference ��E in Ry� is given with respect to the reference configuration. In
square bracket we report the difference of the eigenvalues found by solving the all-electron Dirac-Kohn-
Sham equations and the frozen-core all-electron Dirac-Kohn-Sham equations with the same sign convention.

Fe �3s23p6� 3d3/2
4 3d5/2

3 4s1/2 3d3/2
4 3d5/2

2 4s1/24p1/2 3d3/2
4 3d5/2

2 4s1/2

3d3/2 0.2848 �−0.4� 0.6774 �−0.2� 1.1772 �−0.3�
3d5/2 0.2748 �−0.4� 0.6662 �−0.2� 1.1659 �−0.3�
4s1/2 0.3125 �0.4� 0.4655 �0.0� 0.9057 �0.1�
4p1/2 0.0652 �0.1� 0.1571 �0.0� 0.5431 �0.0�
4p3/2 0.0630 �0.1� 0.1533 �0.0� 0.5372 �0.0�
�E −0.0523 �−0.6� 0.2990 �0.0� 0.6413 �0.0�

Fe 3d3/2
4 3d5/2

3 4s1/2 3d3/2
4 3d5/2

2 4s1/24p1/2 3d3/2
4 3d5/2

2 4s1/2

3d3/2 0.2848 �−3.6� �−3.4	 0.6774 �4.4� �4.6	 1.1772 �4.0� �4.1	
3d5/2 0.2748 �−3.5� �−3.4	 0.6662 �4.4� �4.5	 1.1659 �4.0� �4.1	
4s1/2 0.3125 �1.9� �1.7	 0.4655 �−0.2� �−0.1	 0.9057 �0.0� �0.0	
4p1/2 0.0652 �0.9� �0.8	 0.1571 �−0.2� �−0.2	 0.5431 �0.0� �0.0	
4p3/2 0.0630 �0.9� �0.8	 0.1533 �−0.2� �−0.2	 0.5372 �0.0� �−0.1	
�E 0.0156 �−2.3� �−2.1	 0.3356 �−0.6� �−0.6	 0.6779 �0.5� �0.5	
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The theoretical lattice constants and bulk moduli of the
three metals considered in this work are reported in Table IV
and compared with experiment and with previous FR
calculations.11,27,45 In Ref. 11 the all-electron Dirac-type
equations are solved, in Ref. 45 the all-electron Pauli-type
equations are solved and spin orbit is included while in Ref.
27 FR US-PPs are used. In fcc-Pt and fcc-Au, PAW data sets
with semicore states give theoretical lattice constants that
agree to better than 0.01 a.u. with the all-electron results of
Ref. 11. Slightly larger lattice constants result instead ne-
glecting semicore states. The influence of semicore states on
the bulk moduli is weaker, and there is also a negligible
effect on the structural and magnetic properties of bcc-Fe.
For comparison, in Table IV we report the structural proper-
ties obtained with SR PAW data sets constructed with the
same parameters. As in Ref. 27, we still find that the inclu-
sion of spin-orbit coupling has only a marginal effect on the

lattice constants, smaller than that of semicore states, but has
a detectable effect on the bulk moduli. Surprisingly, the same
applies also to bcc-Fe, where spin-orbit effects are expected
to be small. The reason for this is presently unclear and will
require further investigations. We notice only that the sign of
the spin-orbit effects on the bulk modulus is material depen-
dent, with a decrease in bcc-Fe and fcc-Pt and an increase in
fcc-Au.

In Table V, we report the electronic band structures of
fcc-Pt and fcc-Au in a few high-symmetry points of the Bril-
louin zone and compare the results with those obtained by
the FR US-PPs in Ref. 27 and by the solution of the Dirac-
type KS equations in Ref. 11. All results have been obtained
at the same lattice constant used in Ref. 11. In Ref. 27 we
used a 8�8�8 k-point mesh as in Ref. 11, while here we
are using a 16�16�16 mesh, to obtain more converged
results. Although the US-PPs of Ref. 27 and the present PAW

TABLE II. As in Table I for Pt with the LDA functional.

Pt �5s25p6� 5d3/2
4 5d5/2

6 6s1/2
0 5d3/2

4 5d5/2
4 6s1/2

2 5d3/2
4 5d5/2

4 6s1/2

5d3/2 0.4066 �0.0� 0.6639 �0.2� 1.2896 �0.2�
5d5/2 0.3143 �0.0� 0.5596 �0.1� 1.1823 �0.2�
6s1/2 0.3853 �0.1� 0.4970 �0.0� 1.0508 �0.0�
6p1/2 0.0734 �0.0� 0.1322 �0.0� 0.6135 �0.0�
6p3/2 0.0407 �0.0� 0.0835 �0.0� 0.5301 �0.0�
�E 0.0415 �0.0� 0.0254 �−0.1� 0.7944 �0.1�

Pt 5d3/2
4 5d5/2

6 6s1/2
0 5d3/2

4 5d5/2
4 6s1/2

2 5d3/2
4 5d5/2

4 6s1/2

5d3/2 0.4066 �−1.1� �−1.1	 0.6639 �3.1� �3.2	 1.2896 �4.0� �3.9	
5d5/2 0.3143 �−0.8� �−0.8	 0.5596 �2.7� �2.8	 1.1823 �3.6� �3.6	
6s1/2 0.3853 �0.9� �0.8	 0.4970 �−0.2� �−0.2	 1.0508 �0.3� �0.4	
6p1/2 0.0734 �0.7� �0.6	 0.1322 �−0.3� �−0.3	 0.6135 �0.1� �0.1	
6p3/2 0.0407 �0.6� �0.6	 0.0835 �−0.2� �−0.3	 0.5301 �0.3� �0.5	
�E 0.0415 �−0.9� �−0.9	 0.0254 �−1.4� �−1.3	 0.7944 �−1.4� �−1.4	

TABLE III. As in Table I for Au with the LDA functional.

Au �5s25p6� 5d3/2
4 5d5/2

5 6s1/2
2 5d3/2

4 5d5/2
5 6s1/2 5d3/2

4 5d5/2
4 6s1/2

2

5d3/2 0.7434 �0.2� 1.3887 �0.1� 1.5674 �0.5�
5d5/2 0.6238 �0.1� 1.2663 �0.1� 1.4384 �0.4�
6s1/2 0.5114 �0.1� 1.0814 �0.0� 1.1625 �0.0�
6p1/2 0.1307 �−0.1� 0.6249 �−0.1� 0.6805 �0.4�
6p3/2 0.0793 �−0.1� 0.5358 �−0.1� 0.5816 �0.2�
�E 0.0715 �0.1� 0.8628 �0.0� 1.0924 �0.3�

Au 5d3/2
4 5d5/2

5 6s1/2
2 5d3/2

4 5d5/2
5 6s1/2 5d3/2

4 5d5/2
6 6s1/2

0

5d3/2 0.7434 �3.2� �3.2	 1.3887 �4.0� �4.0	 1.2199 �−0.3� �−0.3	
5d5/2 0.6238 �2.8� �2.8	 1.2663 �3.5� �3.5	 1.1038 �−0.3� �−0.2	
6s1/2 0.5114 �−0.2� �−0.2	 1.0814 �0.3� �0.3	 1.0004 �0.2� �0.2	
6p1/2 0.1307 �−0.3� �−0.3	 0.6249 �0.1� �0.1	 0.5668 �0.2� �0.2	
6p3/2 0.0793 �−0.2� �−0.2	 0.5358 �0.3� �0.1	 0.4863 �0.2� �0.1	
�E 0.0715 �−1.4� �−1.3	 0.8628 �−1.5� �−1.4	 0.7196 �−0.1� �−0.1	
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data sets have been generated with quite different recipes, the
agreement between the two band structures is good with er-
rors mostly below 0.03 eV. The average difference in the
fcc-Pt case is of about 0.01 eV. In fcc-Au, the average dif-
ference appears larger �about 0.07 eV� but this is due to the
different k-point sampling. With a 8�8�8 mesh, the differ-
ence is below 0.03 eV. When compared to the all-electron
results of Ref. 11, the PAW data sets are nearly equivalent to
the US-PPs, both giving average absolute differences of
about 0.06 eV for fcc-Pt. For fcc-Au, the average absolute
differences are 0.04 eV and 0.06 eV in PAW and US-PPs
case, respectively, but the smaller PAW error is only due to
the different k-point samplings. Since the numerical values
of Ref. 11 have been extracted from a figure and have some
uncertainty, and have been obtained with a slightly different
parametrization of the exchange and correlation energies, we
cannot give too much meaning to the tiny differences be-
tween the two methods and both appear reasonably good.
Finally, we notice that although the PAW data sets without
semicore states have a worse transferability in the atomic
tests, they are acceptable to calculate the electronic band
structures. The energy differences between the data sets with
and without semicore states are mostly within 0.01 eV.

The electronic bands of ferromagnetic bcc-Fe close to the
Fermi energy, at the experimental lattice constant �a0
=5.42 a.u.�, are reported in Fig. 1.48 We show the bands
obtained with data set without semicore states but the results
are almost independent from the data set used, the largest
differences being of about 0.02 eV. In Fig. 1, we show the
bands along �-H �H= �1,0 ,0� in units of 2�

a0
	 and �-H�

�H�= �0,0 ,1�	. The magnetization vector is, in all points,
parallel to the z axis, so in the first line, the k vectors are
perpendicular to the magnetization, whereas in the second
line they are parallel to the magnetization. In Fig. 1, we have
indicated with different line types and colors bands of differ-
ent symmetry with respect to the operations that do not con-
tain time reversal.49 Along the �-H direction, the relevant
symmetry group is Cs, the mirror plane containing the mag-

netization vector and the k points, and the states are divided
among the �3 and �4 representations. Along �-H� the rel-
evant symmetry group is C4 with the rotation axis parallel to
the magnetization. There are states of four different symme-
tries indicated with �5, �6, �7, and �8. At the points �, H,
and H� the symmetry group becomes C4h. All the bands
shown in Fig. 1 are even with respect to inversion and the
representations becomes �5

+, �6
+, �7

+, and �8
+. Similar bands

calculated using a NC-PP and an all-electron code were pre-
sented in Refs. 33 and 34. Both calculations agree quite well
with each other and with the present result and also the all-
electron magnetic moment reported in Ref. 34 �2.226 �B�
agrees with our value.

In conclusion, we have written the PAW Dirac-type equa-
tions of RSDFT and we have transformed these equations
into Pauli-type equations making errors of order 1 /c2 or
comparable to the TEs. In heavy atoms, these errors are
much smaller than the errors of order �ZI /c�3 of the second-
order Taylor expansions of the Dirac-type equation. We
solved the Pauli-type equations for fcc-Pt, fcc-Au, and ferro-
magnetic bcc-Fe and we showed that the PAW band struc-
tures match the band structures of the all-electron Dirac-type
equations. The FR US-PPs �Ref. 27� are a further approxi-
mation of the present scheme in which, inside the PAW
spheres, the partial occupations are linearized about the
atomic partial occupations so that the bare coefficients of the
nonlocal PP can be calculated in the isolated atoms. The FR
US-PPs turn out to give results that compare well with the
present FR PAW results.
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APPENDIX A: THE RELATIVISTIC PAW DATA SET

Partial waves and projectors are calculated in a nonmag-
netic, isolated atom. The magnitude of the small components

TABLE IV. Theoretical lattice constants �a0� and bulk moduli �B0� of the systems studied in this work
compared with previous calculations and with experiments. For ferromagnetic bcc-Fe, we report also the
magnetic moment � at the equilibrium lattice constant.

Fe �PBE� Pt �LDA� Au �LDA�

a0

�a.u.�
B0

�GPa�
�

��B�
a0

�a.u.�
B0

�GPa�
a0

�a.u.�
B0

�GPa�

No semicore �FR� 5.358 189 2.17 7.403 301 7.666 199

Semicore �FR� 5.360 189 2.16 7.372 300 7.633 200

No semicore �SR� 5.355 196 2.17 7.396 306 7.681 192

Semicore �SR� 5.357 196 2.17 7.365 305 7.648 194

Reference 11 �FR� 7.370 297 7.637 195

Reference 45 �FR� 7.386 7.648

Reference 27 �FR US-PPs� 7.40 292 7.640 198

Expt. 5.42a 168a 2.22a 7.40b, 7.394c 283b 7.67b, 7.676c 173b

aReference 46.
bExtrapolated at T=0. Reference 47.
cExtrapolated at T=0. Reference 45.
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of the pseudo-partial-waves and of the projectors varies with
the construction recipe. 	m

I,AE�r� depends on the angular and
spin variables through spin-angle functions �see below�,
whereas the radial components are the solutions of the radial
Dirac-type equations. For a given � and �, from the solutions
of the coupled equations,

− c
 d

dr
+

�

r
�Q�,��r� + �Veff�r� − ��,�	P�,��r� = 0, �A1�

c
 d

dr
−

�

r
�P�,��r� + �Veff�r� − ��,� − 2c2	Q�,��r� = 0,

�A2�

the large and small radial components of 	m
I,AE�r� are

P�,��r� /r and iQ�,��r� /r, respectively �here i is the imaginary
unit�. � depends on both j and l. When j= l+1 /2, �= l+1 and
when j= l−1 /2, �=−l. The radial components of the pseudo-
partial-waves can be found by applying a pseudization

recipe50–52 to P�,��r� and Q�,��r�. We call P̃�,��r� and Q̃�,��r�

these pseudoradial components. By choosing a smooth local

effective potential Ṽeff�r� that matches Veff�r� outside the
PAW spheres, the relativistic generalization of the ��r�
functions24 is obtained inverting the radial Dirac equation,

��,�
A �r� = c
 d

dr
+

�

r
�Q̃�,��r� + ���,� − Ṽeff�r�	P̃�,��r� ,

�A3�

��,�
B �r� = − c
 d

dr
−

�

r
�P̃�,��r� + ���,� + 2c2 − Ṽeff�r�	Q̃�,��r� ,

�A4�

where we called ��,�
A �r� and ��,�

B �r� the radial parts of the
large and small components of �m�r�. The projectors 
�,��r�
are calculated from ��,��r� by defining the matrix B�,��
= �P̃�,� ����,�

A �+ �Q̃�,� ����,�
B � and using the relationship:


�,��r�=����B
−1���,����,��r�. These projectors are orthogonal

to the pseudo-wave-functions because �
�,� ����,��

TABLE V. The energy eigenvalues �in eV and at the lattice constant indicated in the first row� of fcc-Pt
and fcc-Au at high-symmetry points are compared with results obtained by four-component relativistic
Dirac-type equations �Ref. 11� or by FR US-PPs �Ref. 27�. The Fermi energy is at zero. The reported values
refer to PAW data sets without semicore states while in parenthesis we report the difference, on the last digit,
obtained with semicore states.

Pt �this work� Pt �Ref. 27� Pt �Ref. 11� Au �this work� Au �Ref. 27� Au �Ref. 11�

a0 �a.u.� 7.414 7.414 7.414 7.707 7.707 7.707

� −10.38 �−1� −10.39 −10.35 −10.07�1� −10.01 −9.95

−4.35 �0� −4.35 −4.24 −5.41 �−1� −5.35 −5.32

−3.36 �0� −3.35 −3.28 −4.21 �−1� −4.14 −4.14

−1.51 �0� −1.52 −1.48 −2.97 �−1� −2.92 −2.96

X −7.23 �0� −7.22 −7.10 −7.30 �0� −7.23 −7.14

−6.79 �0� −6.78 −6.70 −7.01 �0� −6.94 −6.95

−0.24 �0� −0.25 −0.20 −2.27 �−1� −2.22 −2.27

0.06 �1� 0.05 0.04 −2.06 �−1� −2.01 −2.07

−1.03 �−1� −0.98 −1.03

W −5.84 �0� −5.84 −5.72 −6.27 �0� −6.21 −6.16

−4.88 �0� −4.89 −4.83 −5.69 �0� −5.63 −5.67

−4.63 �0� −4.62 −4.58 −5.12 �0� −5.05 −5.08

−1.95 �2� −1.93 −1.87 −3.21 �1� −3.15 −3.20

−1.61 �−1� −1.56 −1.62

L −7.50 �−1� −7.48 −7.44 −7.56 �0� −7.48 −7.53

−4.50 �0� −4.49 −4.43 −5.52 �−1� −5.46 −5.52

−3.49 �0� −3.49 −3.45 −4.33 �0� −4.28 −4.33

−0.72 �−1� −0.74 −0.79 −2.32 �0� −2.27 −2.37

−0.32 �−1� −0.33 −0.30 −1.60 �−1� −1.55 −1.62

−1.23 �1� −1.10 −1.23

K −6.43 �1� −6.42 −6.40 −6.72 �0� −6.66 −6.70

−5.66 �−1� −5.66 −5.57 −6.14 �−1� −6.07 −6.11

−3.07 �0� −3.08 −3.00 −4.03 �0� −3.95 −4.04

−1.39 �0� −1.38 −1.38 −2.97 �0� −2.92 −3.00

−0.10 �0� −0.10 −0.10 −1.92 �0� −1.86 −1.97
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=����B
−1���,�����,� ����,��=����B

−1���,�B��,��=��,��. �To sim-
plify the notation we have indicated with ���,��r� the two

functions P̃�,��r� and Q̃�,��r�	.
When P̃�,��r� and Q̃�,��r� are chosen independently,

��,�
B �r� becomes large, of order c, and the PAW data set can

be used only together with the Dirac-type PAW equations.

Alternatively, as proposed in Ref. 39, P̃�,��r� can be calcu-

lated by a pseudization method while Q̃�,��r� can be taken as

Q̃�,��r� =
c

���,� + 2c2 − Ṽeff�r�	

 d

dr
−

�

r
�P̃�,��r� . �A5�

At variance with Ref. 39, we use Ṽeff�r� instead of the total
potential of the given channel �. In the PAW case there are
many partial waves for each � and no unique total potential.

However, as long as Q̃�,��r� is continuous, the quality of the

data set should be independent from how we define Q̃�,��r�
so our choice should be completely equivalent to that of Ref.
39. We prefer Eq. �A5� because it has two advantages: first
��,�

B �r� vanishes identically together with the corresponding
small component of the projector so that only the large com-
ponents of the pseudo-wave-functions are necessary to
evaluate the partial occupations �Eq. �33�	 and second no
approximation is needed for the calculation of ��,�

A �r�.
With this choice of the pseudo-partial-waves the projec-

tors vanish exactly outside the PAW spheres, Q̃�,��r� is con-
tinuous and the PAW data set can be used both in the Dirac-
type and in the Pauli-type formalism. The above recipe
makes no approximation and therefore does not introduce
additional errors, however we have not applied it because,
limiting the use of the PAW data set to the Pauli-type equa-
tions, it is simpler to calculate ��,�

A �r� with the nonrelativistic
recipe, a procedure that introduces some errors but does not

worsen the overall accuracy. If we take Q̃�,��r�
= 1

2c � d
dr − �

r �P̃�,��r� we have

��,�
A �r� = ���,� − Ṽeff�r� +

1

2

d2

dr2 −
��� − 1�

2r2 �P̃�,��r� ,

�A6�

��,�
B �r� = ���,� − Ṽeff�r�	Q̃�,��r� . �A7�

Obviously, with this choice the function ��,�
A �r� does not van-

ish outside the PAW spheres and, at the border, is of order

�v� /c�2. This is because Q̃�,��r� has a jump at the border with
a discontinuity of order �v� /c�3. In the PAW Dirac-type ap-
proach these errors are unacceptable and this method has to
be avoided but in the PAW Pauli-type approach they are of
the same order of the errors made outside the spheres and
presently still much smaller than the TEs. Using Eq. �A7�,
the small components ��,�

B �r� are quantities of order v1
3 /c and

can be neglected when applied to the small components of
the pseudo-wave-functions that are also of order v1 /c. The
small components of the projectors 
�,�

B �r� are of the same
order of ��,�

B �r� because the elements of the matrix B�,�� as
well as of its inverse are of order one as the first term in the
definition of B�,��. The second term is of order v1

4 /c2 and can
be neglected. Defining the projectors 
�,�

A �r�
=����B̄

−1���,����,�
A �r�, where B̄�,�� is the matrix B�,�� in which

the terms of order v1
4 /c2 are neglected, we obtain projectors

that are exactly orthogonal to the large component of the
pseudo-wave-functions because �
�,�

A �P��,��
=����B̄

−1���,�����,�
A �P��,��=����B̄

−1���,�B̄��,��=��,��.

APPENDIX B: SUMS OVER THE FOUR-COMPONENT
SPINOR INDEXES

In this appendix, we discuss how to perform the sums
over the large and small components. These sums show up
both in the PAW Dirac-type equations �Eqs. �39�–�41�	 as
well as in the PAW Pauli-type equations �Eqs. �51�–�53�	.
Sums over the � indexes appear in the expression of the
all-electron charge and magnetization densities �1,I�r�,
m1,I�r�, in the coefficients of the nonlocal PP, DI,mn

1 and

D̃I,mn
1 , and in the integral of ṼLOC

�1,�2�r� and K̃�1,�2

�1,�2�r�. As shown
below, we can replace Qmn,�1,�2

I �r� with pseudized functions

Q̂mn,�1,�2

I �r� that vanish everywhere except in the first upper
2�2 block. As a consequence, sums over the small compo-
nents appear only for quantities calculated on the radial grids
inside the spheres.

We start by considering the form of the all-electron partial
waves. The partial wave 	m,�

I,AE�r� can be written as

	m,�
I,AE�r� =

1

r
 P�,l,j
I �r�Ỹl,j,mj

I,� ��r�

iQ�,l,j
I �r�Ỹ2j−l,j,mj

I,� ��r�
� , �B1�

where Ỹl,j,mj

I,� ��r� are spin-angle functions whose expression
is reported, for instance, in Ref. 20. The spin-angle functions
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FIG. 1. �Color online� Calculated relativistic PBE-PAW band
structure of ferromagnetic bcc-Fe close to the Fermi level. The
bands along the �-H direction are shown for both k perpendicular
and parallel to the magnetization direction. The zero of the energy is
taken at the Fermi energy. Different colors and line types indicate
bands of different symmetry with respect to the operations that do
not contain time reversal �Ref. 49�. The relevant group is indicated,
for each line and symmetry point, in the square brackets above the
figure.
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of the small and large components have different l. They are

related by the relationship: Ỹ2j−l,j,mj

I ��r�=−� · r̂Ỹl,j,mj

I ��r�,
where r̂= �r−RI� / �r−RI�. This fact, together with the equa-
tion �� · r̂�2=12�2, can be used to write �1,I�r� as

�1,I�r� = �
�,l,j,mj;��,l�,j�,mj�

�
�

��,l,j,mj;��,l�,j�,mj�
I 1

r2

��P�,l,j
I �r�P��,l�,j�

I �r�

+ Q�,l,j
I �r�Q��,l�,j�

I �r�	Ỹl,j,mj

�,I,� ��r�Ỹl�,j�,mj�
I,� ��r� ,

�B2�

where we have expanded the indexes m and n introduced
above with the four indexes � , l , j ,mj and �� , l� , j� ,mj�, re-
spectively.

For the magnetization density, we can employ the rela-
tionship �� · r̂��i�� · r̂�=2r̂i�� · r̂�−�i to obtain

mi
1,I�r� = �B �

�,l,j,mj;��,l�,j�,mj�
�

�1,�2

��,l,j,mj;��,l�,j�,mj�
I

�
1

r2 ��P�,l,j
I �r�P��,l�,j�

I �r�

+ Q�,l,j
I �r�Q��,l�,j�

I �r�	�i
�1,�2

− Q�,l,j
I �r�Q��,l�,j�

I �r�2r̂i�� · r̂��1,�2�

�Ỹl,j,mj

�,I,�1��r�Ỹl�,j�,mj�
I,�2 ��r� . �B3�

For practical calculations, we apply the same approach of
Ref. 27 to both the charge and the magnetization densities.
Here we discuss only the latter because the charge density
can be treated in a similar way. We start by recalling Eq. �6�
of Ref. 27 and writing the spin-angle functions in terms of
spherical harmonics. This equation is

Ỹl,j,mj

I,� ��r� = �
ml=−l

l

cmj,ml

�,l,j Yl,ml
�I ��r� , �B4�

where, with the notations of Ref. 27, cmj,ml

�,l,j =�mj

�,l,jUmj,ml

�,l,j , �mj

�,l,j

are the Clebsch-Gordan coefficients and Umj,ml

�,l,j is the unitary
matrix that selects the spherical harmonics Yl,ml

�I for each l, j,
mj, and �. Using this relationship, we obtain

mi
1,I�r� = �B �

�,l,j,mj;��,l�,j�,mj�
�

�1,�2

�
k

�
ml,ml�

��k
�1,�2cmj,ml

�,�1,l,jcmj�,ml�
�2,l�,j���,l,j,mj;��,l�,j�,mj�

I

�
1

r2 ��P�,l,j
I �r�P��,l�,j�

I �r� + Q�,l,j
I �r�Q��,l�,j�

I �r�	�i,k

− Q�,l,j
I �r�Q��,l�,j�

I �r�2r̂ir̂k�Yl,ml
��,I��r�Yl�,ml�

�I ��r� .

�B5�

The partial occupations are written in terms of spin-angle
functions too and can be rewritten as

��,l,j,mj;��,l�,j�,mj�
I = �

�1,�2

�
m1l,m1l�

cmj,m1l

�1,l,j cmj�,m1l�
�,�2,l�,j��̃

�,l,j,m1l;��,l�,j�,m1l�
I,�1,�2 ,

�B6�

where �̃
�,l,j,m1l;��,l�,j�,m1l�
I,�1,�2 are partial occupations calculated as

in the SR case, with projectors defined by spherical
harmonics27

�̃
�,l,j,m1l;��,l�,j�,m1l�
I,�1,�2 = �

i

��̃i,�1

A �
�,l,j
I,A Yl,m1l

�I ��
��,l�,j�
I,A Yl�,m1l�

�I ��̃i,�2

A � .

�B7�

We assumed that the small components of the projectors are
negligible �Pauli-type case� or vanish �Dirac-type case�.
When this does not happen, Eqs. �B6� and �B7� are more
complicated but we do not need them. Following now Ref.
27 and introducing the functions f l,j,ml;l,j,m1l

�1,�2 =�mj
cmj,ml

�1,l,jcmj,m1l

�,�2,l,j

and the partial occupations,

�
�,l,j,ml;��,l�,j�,ml�
I,�1,�2 = �

�3,�4

�
m1l,m1l�

f l,j,m1l;l,j,ml

�3,�1

�f l�,j�,ml�;l�,j�,m1l�
�2,�4 �̃

�,l,j,m1l;��,l�,j�,m1l�
I,�3,�4 ,

�B8�

we can calculate the magnetization density making sums
over the ml and ml� �−l�ml� l and −l��ml�� l�� instead of
mj and mj� �−j�mj � j and −j��mj � j�. We have

mi
1,I�r� = �B �

�,l,j,ml;��,l�,j�,ml�
�

k
�

�1,�2

�k
�1,�2�

�,l,j,ml;��,l�,j�,ml�
I,�1,�2

�
1

r2 ��P�,l,j
I �r�P��,l�,j�

I �r� + Q�,l,j
I �r�Q��,l�,j�

I �r�	�i,k

− Q�,l,j
I �r�Q��,l�,j�

I �r�2r̂ir̂k�Yl,ml
��,I��r�Yl�,ml�

�I ��r� .

�B9�

This expression and the equivalent expression for m̃i
1,I�r�

+m̂i
1,I�r� have been implemented in QE.41

Let us now discuss how to define the augmentation func-
tions. These functions have to satisfy two constraints. On one
hand, they have to be as smooth as possible to be described
in the real-space mesh and on the other hand they have to
give compensation charges with the same multipole mo-
ments as �1,I�r�− �̃1,I�r�. These charge-density differences are
equal to

�1,I�r� − �̃1,I�r� = �
�,l,j,mj;��,l�,j�,mj�

�
�

��,l,j,mj;��,l�,j�,mj�
I

�A�,l,j;��,l�,j�
I �r�Ỹl,j,mj

�,I,� ��r�Ỹl�,j�,mj�
I,� ��r� ,

�B10�

where we used the notation A�,l,j;��,l�,j�
I �r�

= 1
r2 �P�,l,j

I �r�P��,l�,j�
I �r�+Q�,l,j

I �r�Q��,l�,j�
I �r�− P̃�,l,j

I �r�P̃��,l�,j�
I �r�

−Q̃�,l,j
I �r�Q̃��,l�,j�

I �r�	 that is suitable to the PAW Dirac-type
case. As suggested by Eq. �46�, in the PAW Pauli-type case
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the term Q̃�,l,j
I �r�Q̃��,l�,j�

I �r� is omitted whereas the small
components of the all-electron partial waves are included
only inside the PAW spheres.

Equation �B10� can be rewritten introducing the spherical
harmonics. Following stepwise the derivation of Eq. �B9�,
we have

�1,I�r� − �̃1,I�r� = �
�,l,j,ml;��,l�,j�,ml�

�
�

��,l,j,ml;��,l�,j�,ml�
I,�,�

�A�,l,j;��,l�,j�
I �r�Yl,ml

��,I��r�Yl�,ml�
�I ��r� .

�B11�

Expanding the product of two spherical harmonics into
spherical harmonics,

Yl,ml
��,I��r�Yl�,ml�

�I ��r�

= �
L=�l−l��

l+l�

�
M=−L

L

a�l,ml;l�,ml�;L,M�YL,M�I ��r� , �B12�

we can proceed as in the SR case,40 replacing each function
A�,l,j;��,l�,j�

I �r� with many functions, one for each L so as to

conserve the L multipole moment. We call Ã�,l,j;��,l�,j�
I,L �r�

these functions that can be constructed as described in Ref.
15 or with any equivalent method. The final expression of
the compensation charge is

�̂I�r� = �
�,l,j,ml;��,l�,j�,ml�

�
�

��,l,j,ml;��,l�,j�,ml�
I,�,� Q̂�,l,j,ml;��,l�,j�,ml�

I �r� ,

�B13�

where the augmentation functions are

Q̂�,l,j,ml;��,l�,j�,ml�
I �r�

= �
L,M

Ã�,l,j;��,l�,j�
I,L �r�a�l,ml;l�,ml�;L,M�YL,M�I ��r�

�B14�

in close analogy with the SR case. The augmentation func-
tions Q̂mn,�1,�2

I �r� used in Eqs. �41� and �51� and in the defi-

nition of K̃�3,�4

�1,�2�r� can be constructed starting from

Q̂
�,l,j,ml;��,l�,j�,ml�
I �r�. The way in which we separate the angu-

lar and spin components of Q̂mn,�1,�2

I �r� is to a certain extent
arbitrary, provided that the compensation charges �̂I�r� have
the same multipole moments as �1,I�r�− �̃1,I�r�. For compu-
tational convenience, we defined augmentation functions that
vanish everywhere except in the first upper 2�2 block. We
take

Q̂�,l,j,mj;��,l�,j�,mj�;�1,�2

I �r�

= �
ml,ml�

cmj,ml

�,�1,l,jcmj�,ml�
�2,l�,j�Q̂�,l,j,ml;��,l�,j�,ml�

I �r� �B15�

and zero elsewhere. With this definition, �̂�1,�2

I �r� becomes

�̂�1,�2

I �r� = 
��,l,j,mj;��,l�,j�,mj�
��,l,j,mj;��,l�,j�,mj�

I Q̂�,l,j,mj;��,l�,j�,mj�;�1,�2

I �r� 0

0 0
� �B16�

inside the spheres, and �̂�1,�2
�r�=�I�̂�1,�2

I �r−RI� in the real-
space mesh. Although the lower and the off-diagonal 2�2
blocks of the compensation density matrices are forced to
vanish, the compensation charges have the correct multipole
moments and this is a sufficient condition to have the correct
electrostatics so with this choice we are not introducing any
additional error.

Finally, we discuss how to calculate DI,mn
1 and the nonlo-

cal PP terms �ImnDI,mn
1 �
m,�1

I,A ��
n,�2

I,A �. DI,mn
1 has two parts, one

due to the kinetic-energy operator and one due to the term
VLOC

I,�1,�2. They are quite different and are dealt with separately.
The kinetic-energy part presents no difficulty because the
spherically symmetric Dirac operator can be calculated in the
isolated atom. The all-electron partial waves solve the atomic
Dirac-type equations so the sum over the spin components
and the angular integral can be carried out analytically. We

have ��1,�2
�	m,�1

I,AE �TD
�1,�2�	n,�2

I,AE��=�l,l�� j,j��mj,mj�
TD,�,��

I,l,j where

TD,�,��
I,l,j = 


0

rs

dr�P�,l,j
I �r�P��,l,j

I �r� + Q�,l,j
I �r�Q��,l,j

I �r�	

�����,l,j − Veff,at
I �r�	 . �B17�

rs is the radius of the PAW sphere, ���,l,j is the energy at
which the partial waves and projectors have been con-
structed, and Veff,at

I �r� is the atomic effective all-electron po-
tential. TD,�,��

I,l,j are calculated together with the partial waves
and projectors during the PAW data set generation. They
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have the same structure of the unscreened coefficients of the
nonlocal FR US-PPs. Following Ref. 27, we can write

�
I,mn

�
�1,�2

�	m,�1

I,AE �TD
�1,�2�	n,�2

I,AE���
m,�1

I,A ��
n,�2

I,A �

= �
I

�
�,l,j,ml

�
��,l�,j�,ml�

TD,�,l,j,ml;��,l�,j�,ml�
I,�1,�2 �
�,l,j

I,A Yl,ml
�I �

��
��,l�,j�
I,A Yl�,ml�

�I � , �B18�

where

TD,�,l,j,ml;��,l�,j�,ml�
I,�1,�2 = TD,�,��

I,l,j f l,j,ml;l,j,ml�
�1,�2 �l,l�� j,j�, �B19�

so this term has the same expression as the nonlocal part of a
SR US-PP but with spin-dependent nonlocal PP coefficients.

In general VLOC
I,�1,�2�r� is not spherically symmetric but it is

block diagonal and does not couple the large and small com-
ponents of the partial waves. With the same techniques in-
troduced in this appendix, we can write

�
�1,�2

�	m,�1

I,AE �VLOC
I,�1,�2�	n,�2

I,AE��

= �
�1,�2

�P�,l,j
I Ỹl,j,mj

I,�1 �VLOC
I,�1,�2�P��,l�,j�

I Ỹl�,j�,mj�
I,�2 ��

+ �
�1,�2

�Q�,l,j
I Ỹl,j,mj

I,�1 �VLOC
I,�1,�2�Q��,l�,j�

I Ỹl�,j�,mj�
I,�2 ��

+ �
�1,�2

�Q�,l,j
I Ỹl,j,mj

I,�1 �2�BBxc
I · r̂�� · r̂��1,�2�Q��,l�,j�

I Ỹl�,j�,mj�
I,�2 ��.

�B20�

This complete expression, which is needed in a magnetic
solid, can be simplified by carrying out the angular integrals
analytically. We first write the angular dependence of the
integrand function by introducing the spherical harmonics,

�
�1,�2

�	m,�1

I,AE �VLOC
I,�1,�2�	n,�2

I,AE�

= �
�1,�2

�
ml,ml�

cmj,ml

�,�1,l,jcmj�,ml�
�2,l�,j�


�I

d3r

r2 ��P�,l,j
I �r�P��,l�,j�

I �r�

+ Q�,l,j
I �r�Q��,l�,j�

I �r�	VLOC
I,�1,�2�r�

+ Q�,l,j
I �r�Q��,l�,j�

I �r�2�BBxc
I · r̂�� · r̂��1,�2�

�Yl,ml
��,I��r�Yl�,ml�

�I ��r� , �B21�

then we expand VLOC
I,�1,�2�r� and G�r�I,�1,�2

=2�BBxc
I · r̂�� · r̂��1,�2 in spherical harmonics,

VLOC
I,�1,�2�r� = �

L,M
VLOC,L,M

I,�1,�2 �r�YL,M�I ��r� , �B22�

GI,�1,�2�r� = �
L,M

GL,M
I,�1,�2�r�YL,M�I ��r� . �B23�

Using the expansion �Eq. �B12�	, we obtain

�
�1,�2

�	m,�1

I,AE �VLOC
I,�1,�2�	n,�2

I,AE�

= �
�3,�4

�
m1l,m1l�

cmj,m1l

�,�3,l,jcmj�,m1l�
�4,l�,j�D̄LOC,�,l,j,m1l;��,l�,j�,m1l�

I,�3,�4 ,

�B24�

where

D̄LOC,�,l,j,m1l;��,l�,j�,m1l�
I,�3,�4 = �

L,M



0

rs

dr��P�,l,j
I �r�P��,l�,j�

I �r�

+ Q�,l,j
I �r�Q��,l�,j�

I �r�	VLOC,L,M
I,�3,�4 �r�

+ Q�,l,j
I �r�Q��,l�,j�

I �r�

�GL,M
I,�3,�4�r��a�l,m1l;l�,m1l� ;L,M� .

�B25�

In these expressions, for simplicity, we used real spherical
harmonics but a straightforward generalization would allow
the use of complex spherical harmonics. We can now write
the contribution of this term to the nonlocal PP. We have

�
I,mn

�
�1,�2

�	m,�1

I,AE �VLOC
�1,�2�	n,�2

I,AE���
m,�1

I,A ��
n,�2

I,A �

= �
I

�
�,l,j,ml

�
��,l�,j�,ml�

DLOC,�,l,j,ml;��,l�,j�,ml�
I,�1,�2 �
�,l,j

I,A Yl,ml
�I �

��
��,l�,j�
I,A Yl�,ml�

�I � , �B26�

where

DLOC,�,l,j,ml;��,l�,j�,ml�
I,�1,�2 = �

�3,�4

�
m1l,m1l�

f l,j,ml;l,j,m1l

�1,�3 f l�,j�,m1l� ;l�,j�,ml�
�4,�2

�D̄LOC,�,l,j,m1l;��,l�,j�,m1l�
I,�3,�4 , �B27�

so also the term due to VLOC
�1,�2 has the same form of a nonlo-

cal SR US-PP with spin-dependent coefficients and do not
introduce any complication into existing electronic structure
codes.

In nonmagnetic solids several simplifications occur. The
last term in the square bracket of Eq. �B25� vanishes and
VLOC

�1,�2�r� is diagonal in the spin indexes, so we obtain

D̄LOC,�,l,j,m1l;��,l�,j�,m1l�
I,�3,�4 = ��3,�4�

L,M



0

rs

dr��P�,l,j
I �r�P��,l�,j�

I �r�

+ Q�,l,j
I �r�Q��,l�,j�

I �r�	Veff,L,M
I �r��

�a�l,m1l;l�,m1l� ;L,M� . �B28�

In the US-PPs case this term is calculated in the nonmagnetic
isolated atom, so Veff

I �r� is spherically symmetric. In
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Eq. �B20� the expectation values between spin-angle func-
tions are nonzero only when l= l�, j= j�, and mj =mj� and we
have

�
�1,�2

�	m,�1

I,AE �VLOC
I,�1,�2�	n,�2

I,AE�

= �l,l�� j,j��mj,mj�

0

rs

dr�P�,l,j
I �r�P��,l�,j�

I �r�

+ Q�,l,j
I �r�Q��,l�,j�

I �r�	Veff,at
I �r� . �B29�

This term can be combined with the kinetic-energy term to
give the US expression of DI,mn

1 ,

DI;�,l,j,mj;��,l�,j�,mj�
1 = �l,l�� j,j��mj,mj�

���,l,j

0

rs

dr�P�,l,j
I �r�P��,l,j

I �r�

+ Q�,l,j
I �r�Q��,l,j

I �r�	 . �B30�

Similar considerations as the ones reported for DI,mn
1 , ap-

ply also to D̃I,mn
1 that, having no sum over the four compo-

nents indexes, is simpler to deal with.
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